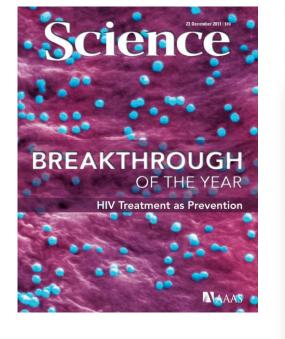
CLINICAL IMPACT: NOVEL WHO (& IAS-USA) HIV-RESISTANCE GUIDELINES

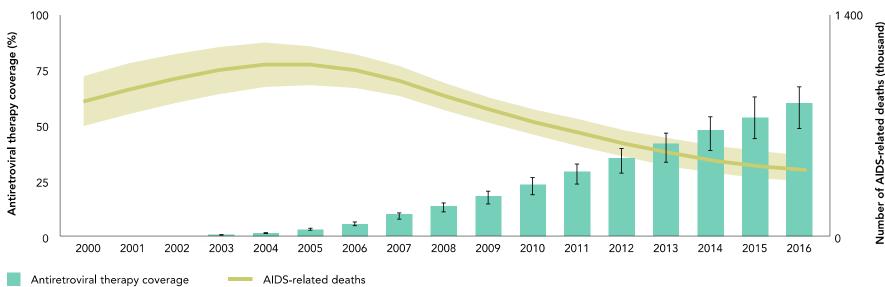

Roger Paredes, MD, PhD

Infectious Diseases Service & irsiCaixa AIDS Research Institute Hospital Universitari Germans Trias i Pujol Badalona, Catalonia, Spain

Who should be treated?

WHO recommends initiation of ART for all people living with HIV at any CD4 cell count

HIV treatment **IS** prevention

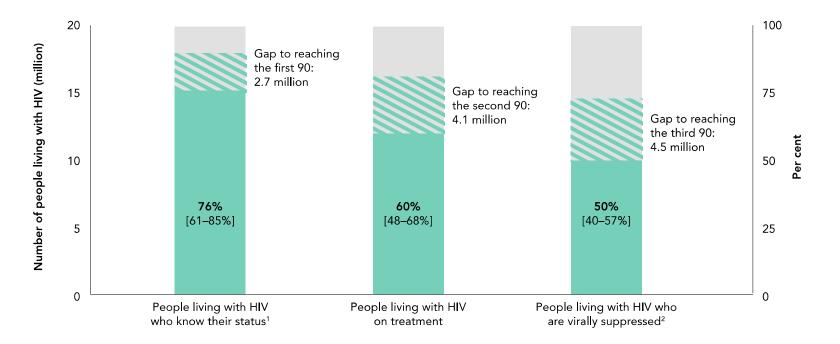

Study Treatment for prevention	<u>Effect size (CI)</u> 96% (73; 99)
PrEP for discordant couples	73% (49; 85)
PrEP for heterosexuals	63% (21; 48)
Medical male circumcision	54% (38; 66)
PrEP for MSMs (America's, Thailand, South Africa)	44% (15; 63)
STD treatment	42% (21; 58)
Microbicide	39% (6; 60)
HIV Vaccine	31% (1; 51)
0% 10 20 30 40 50 60 70 80 90 100 Efficacy	^{0%} CAPRISA

Public health approach to ART

To support simplification of HIV treatment, WHO recommends a limited formulary of preferred treatment options. As well as giving priority to antiretroviral drugs (ARVs) with superior efficacy and tolerability, WHO prioritizes choices based on:

- convenience,
- availability as fixed dose combinations (FDCs),
- compatibility with treatment of common comorbidities, and
- potential to use across all populations.

AIDS-RELATED DEATHS NEARLY CUT IN HALF IN SIX YEARS

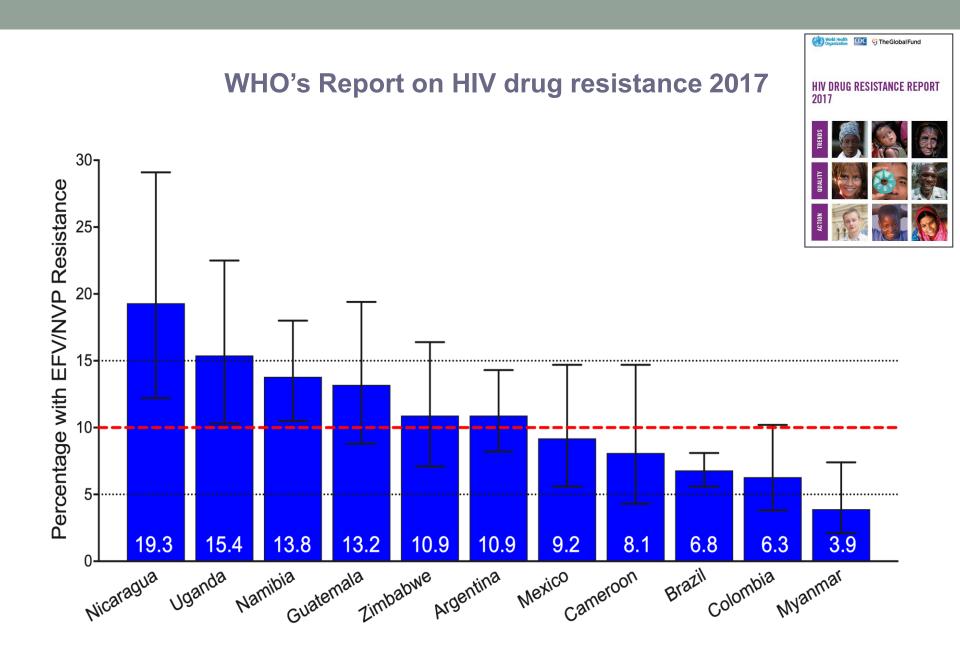


ANTIRETROVIRAL THERAPY COVERAGE AND NUMBER OF AIDS-RELATED DEATHS, EASTERN AND SOUTHERN AFRICA, 2000-2016

Antiretroviral therapy scale-up has been largely responsible for a steep decline in AIDS-related mortality in eastern and southern Africa: the estimated 420 000 [350 000–510 000] AIDS-related deaths in 2016 were 42% fewer than in 2010. The drop in deaths due to AIDS-related illnesses has been even greater among children (aged 0-14 years), declining from an estimated 130 000 [99 000–150 000] in 2010 to 58 000 [41 000–80 000] in 2016. AIDS-related illnes remains a leading cause of death in the region, however, especially among young women and girls aged 15–24 years (1).

Source: 2017 Global AIDS Monitoring; UNAIDS 2017 estimates.

HIV TESTING AND TREATMENT CASCADE IN EASTERN AND SOUTHERN AFRICA


KNOWLEDGE OF HIV STATUS, ANTIRETROVIRAL THERAPY COVERAGE AND VIRAL SUPPRESSION AMONG PEOPLE LIVING WITH HIV, EASTERN AND SOUTHERN AFRICA, 2016

Source: UNAIDS special analysis, 2017; see annex on methods for more details.

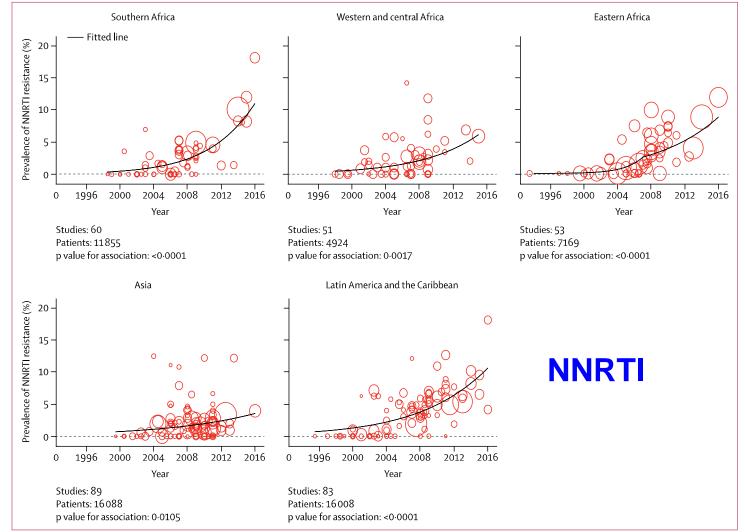
¹ 2016 measure derived from data reported by 17 countries, which accounted for 99% of people living with HIV in western and central Africa.

² 2016 measure derived from data reported by 11 countries. Regionally, 37% of all people on antiretroviral therapy were reported to have received a viral load test during the reporting period.

PRETREATMENT HIVDR IN PEOPLE INITIATING ART

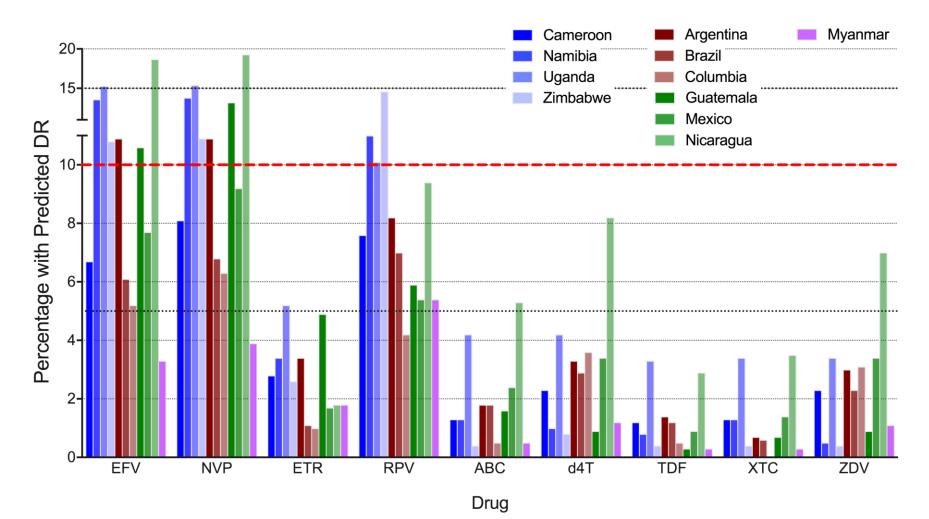
NNRTI resistance pandemic

HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis

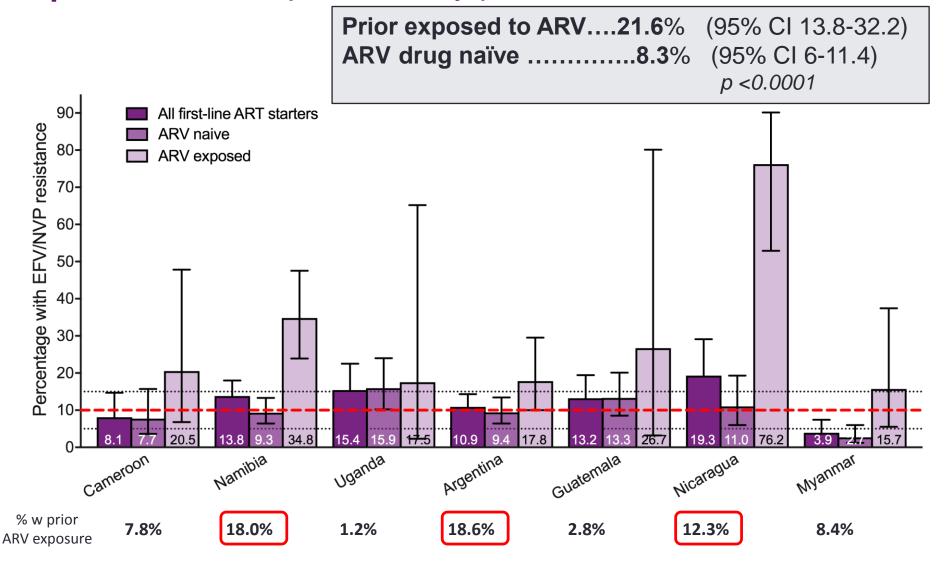

Ravindra K Gupta, John Gregson, Neil Parkin, Hiwot Haile-Selassie, Amilcar Tanuri, Liliana Andrade Forero, Pontiano Kaleebu, Christine Watera, Avelin Aghokeng, Nicholus Mutenda, Janet Dzangare, San Hone, Zaw Zaw Hang, Judith Garcia, Zully Garcia, Paola Marchorro, Enrique Beteta, Amalia Giron, Raph Hamers, Seth Inzaule, Lisa M Frenkel, Michael H Chung, Tulio de Oliveira, Deenan Pillay, Kogie Naidoo, Ayesha Kharsany, Ruthiran Kugathasan, Teresa Cutino, Gillian Hunt, Santiago Avila Rios, Meg Doherty, Michael R Jordan, Silvia Bertagnolio

	Number of studies	Number of genotypes	Genotypes per study	Sampling year	Studies in urban populations*
Eastern Africa	53	7169	92 (57–187)	2008 (2005–09)	32/44 (73%)
Southern Africa	61	11855	102 (53–108)	2007 (2004–09)	41/47 (87%)
Western and central Africa	56	4924	79 (49–104)	2007 (2004–09)	48/50 (96%)
Latin America and the Caribbean	90	16008	98 (52–221)	2008 (2003–10)	67/69 (97%)
Asia†	98	16088	97 (47–223)	2009 (2006–10)	89/89 (100%)
Overall	358	56044	95 (50–194)	2008 (2005–10)	277/299† (93%)

Data are n, median (IQR), or n/N (%). *Denominators restricted to studies with unambiguous information on location available. †For the purpose of this analysis, countries in the southeast Asia, the western Pacific, and eastern Mediterranean regions and Turkey (Europe region) are grouped under the regional heading of Asia.

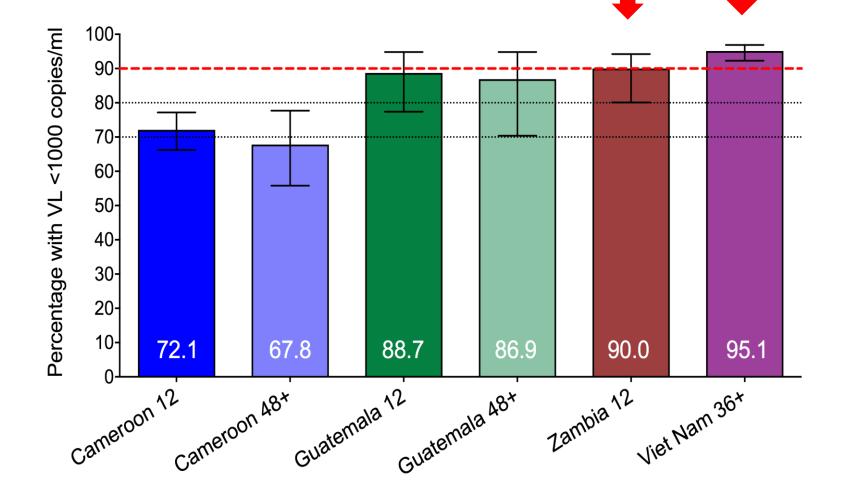

Table 1: Characteristics of included studies by region

NNRTI resistance pandemic

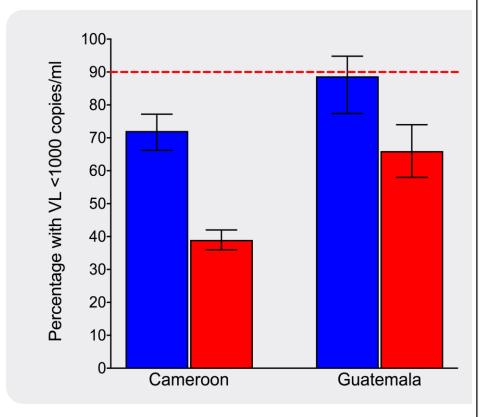


Gupta et al, Lancet Infect Dis 2018

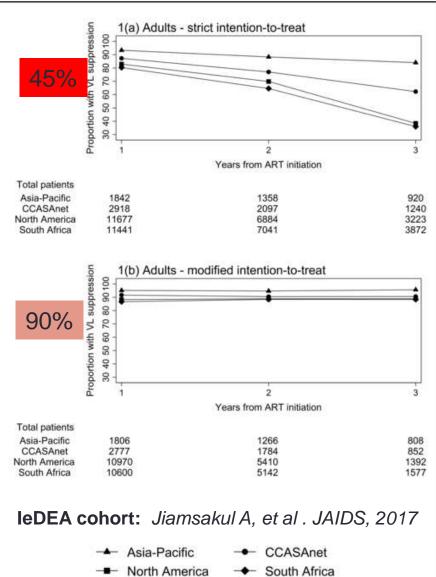
Pretreatment HIVDR in first-line ART initiators by drug (national surveys), 2014-2016



PDR to EFV/NVP in first-line starters: naive vs with previous exposure to ARVs (national surveys), 2014-16



ACQUIRED HIVDR IN PEOPLE RECEIVING ART

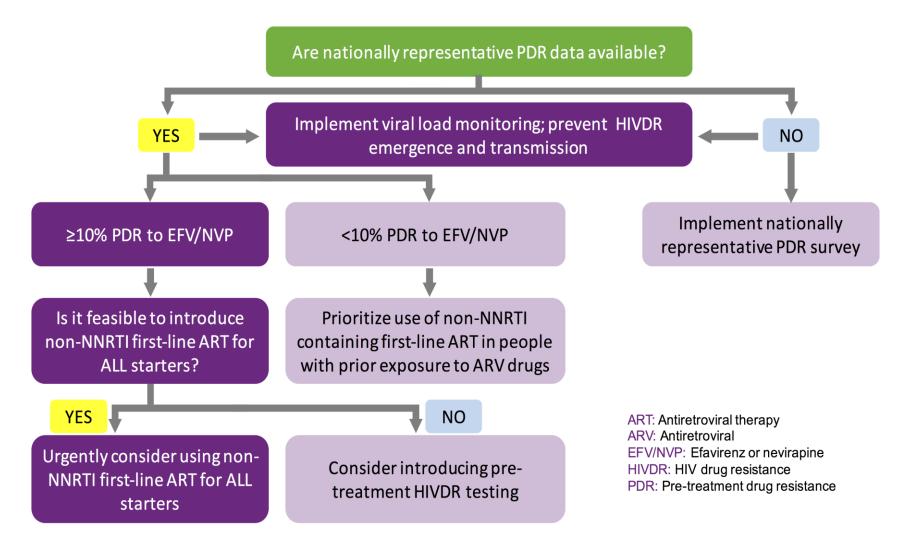

Viral load suppression in people retained on ART (national surveys), 2014-2016

VL suppression in people retained in care vs "ITT" analysis (not in care=VF)

National surveys, 2014-2016

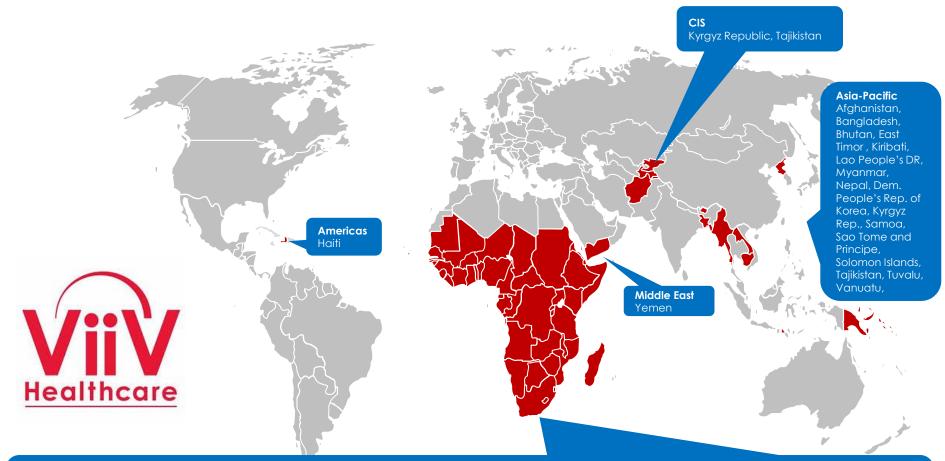
People with NNRTI PDR initiating EFV/NVP had worse outcomes compared to people initiating an non-NNRTI regimen (7 studies)

Outcomes	Odds Ratio	95% CI
Less likely to achieve virological suppression	0.66	0.45-0.97
Shorter time to virological failure or death	HR 3.6	1.7-7.5
More likely to discontinue ART	8.70	3.51-21.53


The cost of no action

Impact of pretreatment HIVDR in sub-Saharan Africa

In the context of level of pretreatment HIVDR \geq 10%

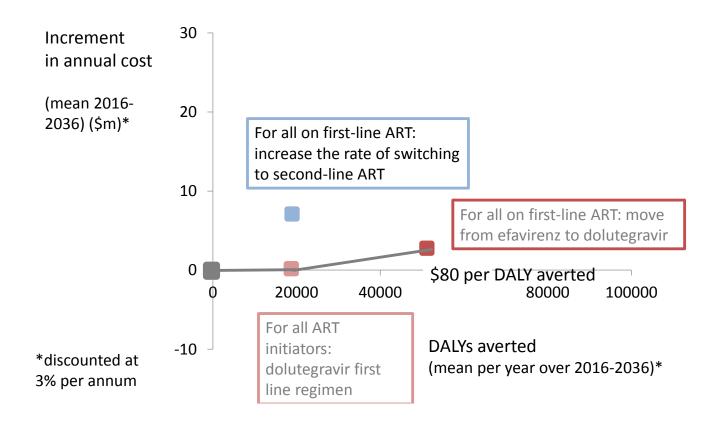

	AIDS deaths	New infections	ART costs
Fast-track projections (with HIVDR)	5.6 million	5.1 million	\$83 billion
Percentage attributable to HIVDR (2016-2030)	15.97%	8.74%	7.71%
Amount attributable to HIVDR (2016- 2030)	890 000	450 000	\$6.5 billion

WHO recommended response to pretreatment HIV drug resistance

Royalty Free Voluntary Licence Adult Countries

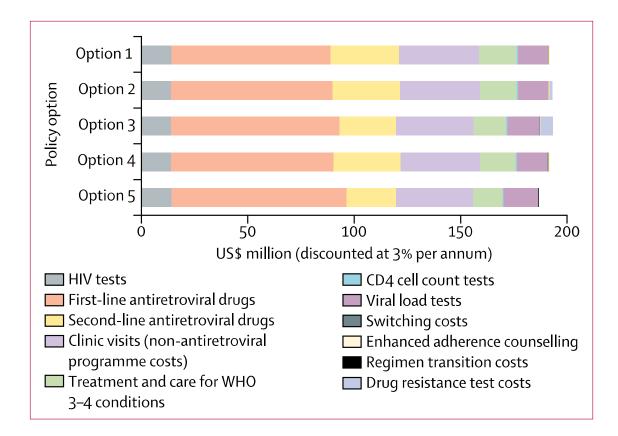
16 generic manufacturers licensed to produce the current ViiV portfolio royalty free for 67 countries in Africa, Asia-Pacific and the Caribbean

Sub-Saharan Africa

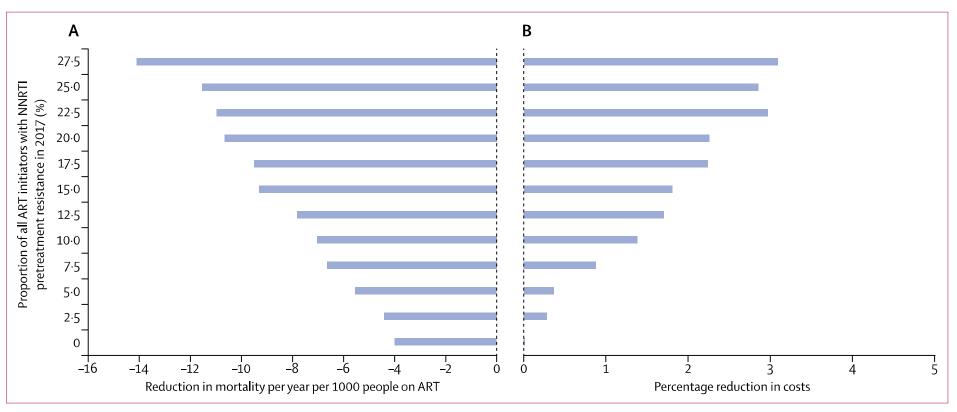

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Cote d'Ivoire, Djibouti, DR Congo (Zaire), Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Gambia, Guinea, Guinea Bissau, Haiti, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe

Health benefits in responding to NNRTI PDR >10%* in sub-Saharan Africa according to the intervention

INTERVENTIONS	Viral load suppression (< 1000 c/mL) Mean %	Mortality Mean rate in people on ART /100 person year		HIV incidence Mean rate/100 person years
1. DTG in first-line ART	86%	3.5		0.72
2. Pretreatment HIVDR testing	83%	3.9		0.74
BASE CASE: EFV in first-line ART	77%	4.5		0.79


The most cost-effective option

Increment in cost and DALYs averted relative to no change in policy if > 10% of all ART initiators have NNRTI resistance in 2016

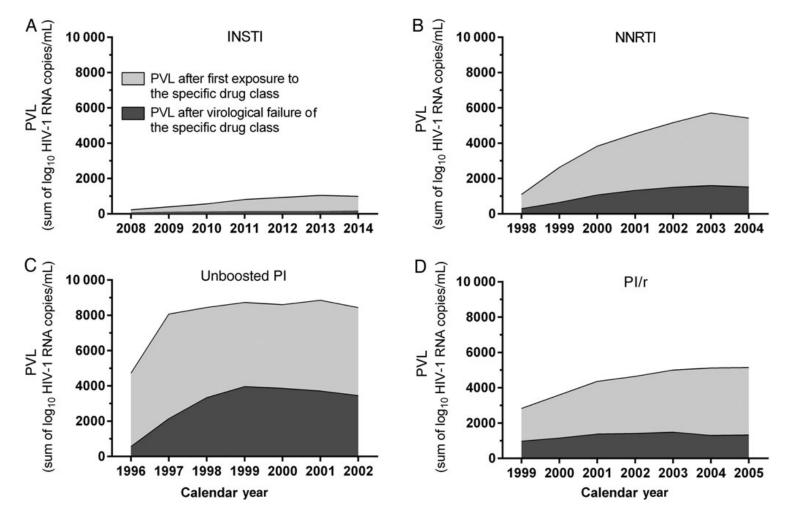

A Phillips. Consultation on Global Trends of HIV Drug Resistance Rockville, Maryland, USA. May 2016

The most cost-effective option

- Option 1: No change.
- Option 2: DR tests for ART initiators with previous antiretroviral exposure.
- Option 3: DR tests for all ART initiators.
- Option 4: First-line DTG for people with previous ART exposure.
- Option 5: First-line DTG for all ART initiators.

The most cost-effective option

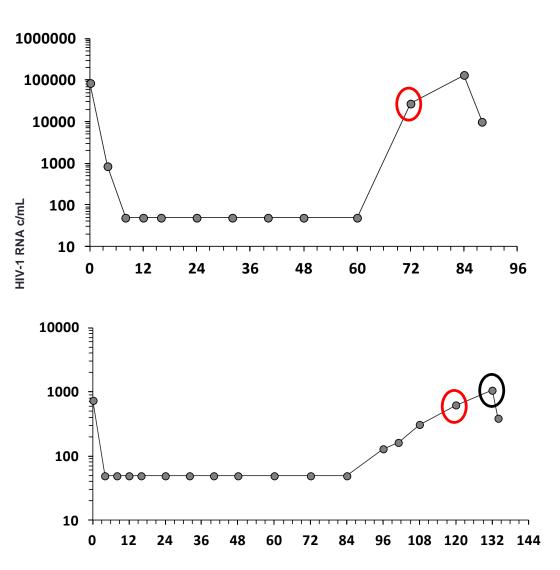
Figure 4: Reductions in mortality and cost associated with use of dolutegravir in ART initiators rather than efavirenz


(A) Difference in mortality (per 1000 people on ART per year) for 2018–38 when using dolutegravir in ART initiators versus continuing with efavirenz-based ART, according to proportion of all ART initiators with NNRTI resistance in 2017. 95% CIs are narrower than +/- 0·1. (B) Percentage reduction in annual costs for the policy of using dolutegravir in ART initiators versus continuing with efavirenz-based ART, according to proportion of all ART initiators with NNRTI resistance in 2017. 95% CIs are narrower than +/- 0·1. (B) Percentage reduction in annual costs for the policy of using dolutegravir in ART initiators versus continuing with efavirenz-based ART, according to proportion of all ART initiators with NNRTI resistance in 2017. 95% CIs are narrower than +/- 0·4. ART=antiretroviral therapy. NNRTI=non-nucleoside reverse transcriptase inhibitor.

No DTG resistance after 1st-line DTG VF in RCTs

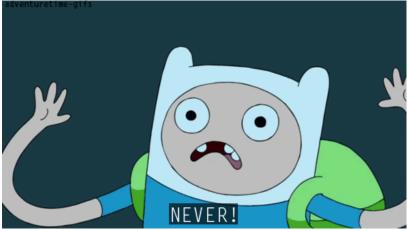
Study	Summary efficacy	PDVF in DTG arm	INSTI resistance
FLAMINGO	DTG > DRV/r	2 / 242	0
ARIA	DTG > ATV/r	1/248	0 (1 K219K/Q + E138E/G)
SINGLE	DTG > EFV	18 / 422	1 E157Q/P (no emergent INSTI DR)
SPRING-2	DTG = RAL	16 / 411	0

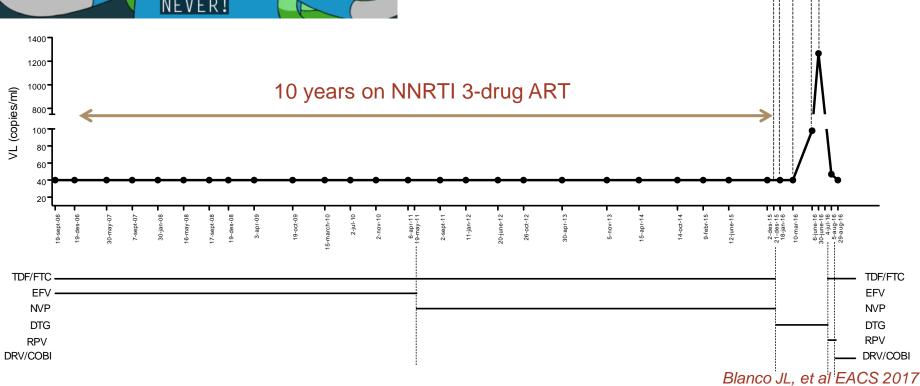
- DTG better than non-INSTIs, non-inferior to RAL
- No INSTI resistance emergence in *ideal* conditions
 - ART-naive
 - WT virus \rightarrow Active backbone
 - Early ART switch after PDFV


Slow resistance development and transmission in resource-rich settings

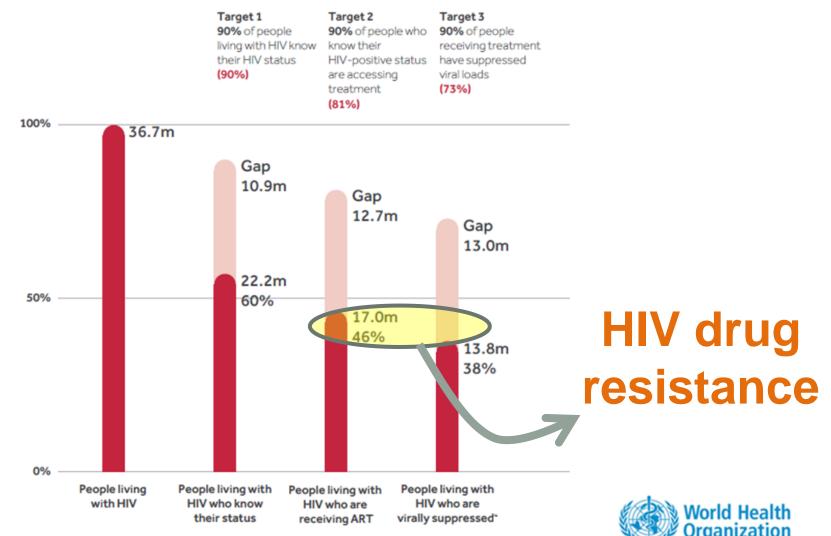
Scherrer A, et al. J Infect Dis 2017

But...

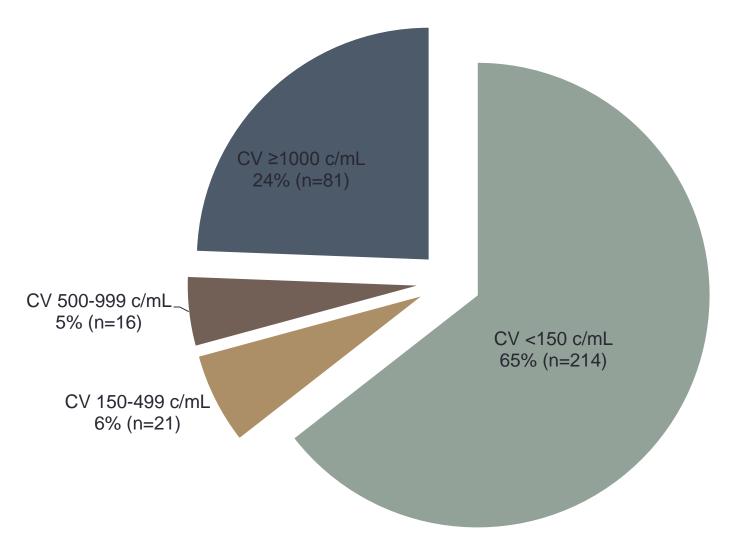

SAILING: Subjects 4 & 3


	Day 1	PDVF				
HIV-1 RNA	84313	27050				
IN mutation	-	l60L, T97A, N155H				
DTG FC	0.66	2.4				
RAL FC	0.52	113				
IN RC	NR ^b	NR				
PDVF BR: No emergent resistance, loss of RT M184V and PI L10F, M36I, M46I, I54V, V82A.						

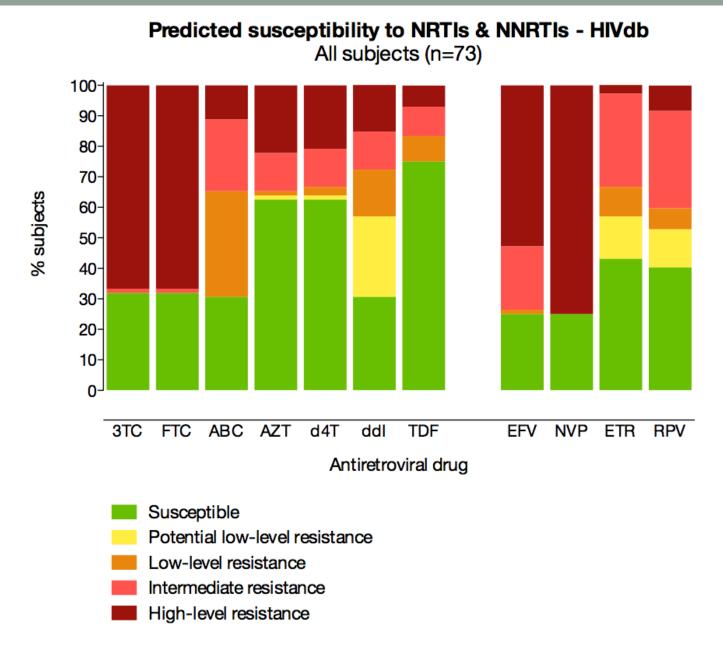
	Day 1	PDVF	Confirm.			
HIV-1 RNA	733	622	1054			
IN mutation	-	A49G, S230R, <mark>R263K</mark>	A49G, S230R, <mark>R263K</mark>			
DTG FC	0.73	3.82	5.77			
RAL FC	0.54	2.39	2.62			
IN RC*	20%	7.1%	12%			
PDVF BR: No emergent resistance, and no NRTI resistance at any time points						



			21/12/2015	18/01/2016	10/03/2016	06/06/2016	30/06/2016	
Campala	Chudu week		0		12	24		
Sample	Study week		0	4	12	24	24 (VF	
Information							confirmation)	
	AR	T	TDF/FTC+NVP	DTG	DTG	DTG	DTG	
	HI\	/-1 RNA	<40	<40	<40	98	1266	
	Dru	ug levels (ng/mL)						
		DTG	<llq< td=""><td>3503.916</td><td>1052.520</td><td>2899.466</td><td>-</td></llq<>	3503.916	1052.520	2899.466	-	
		RAL	<llq< td=""><td><llq< td=""><td><llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<></td></llq<></td></llq<>	<llq< td=""><td><llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<></td></llq<>	<llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<>	<llq< td=""><td>-</td></llq<>	-	
		ELV	<llq< td=""><td><llq< td=""><td><llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<></td></llq<></td></llq<>	<llq< td=""><td><llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<></td></llq<>	<llq< td=""><td><llq< td=""><td>-</td></llq<></td></llq<>	<llq< td=""><td>-</td></llq<>	-	
	DRM by Sanger		-	-	Plasma	Plasma	Plasma	
					RT:	RT:	RT:	
					E138A	E138A	E138A	
					Integrase:	Integrase:	Integrase:	
					ŴT	S147G	S147G	
						N155H	N155H	
	DR	M by MiSeq	PBMC	-	Plasma	Plasma	Plasma	
	Pending	Pending		RT:	RT:	RT:		
					E138A	E138A	E138A	
					Integrase:	Integrase:	Integrase:	
					ŴТ	S147G	S147G	
						N155H	Q148R (3%)	
							N155H	
					1	1	1113311	

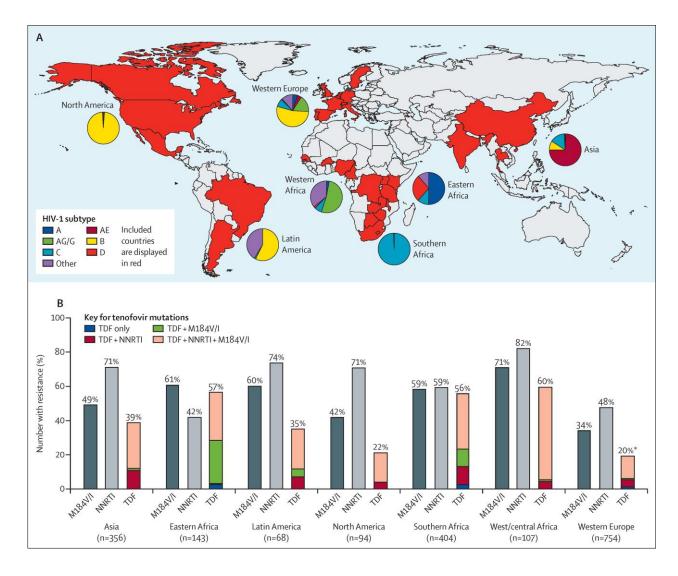


Improvements are needed at each stage of the cascade of HIV testing and treatment services, 2015



Source: UNAIDS/WHO estimates.

Virological status 3 years after 1st-line ART in Manhiça with no VL monitoring, 2013



Rupérez M, JAC 2015

Rupérez M, JAC 2015

Virtual mono and dual DTG therapy

Gupta R. TenoRes Study. Lancet HIV 2016

Prevalence TDR Spain 2015-16 (n=126)

	Mutation ART			(CD4			HIV-1 RNA				
ld	wittation	ARI	0	24	48	72	84	0	24	48	72	84
1	E138K (99.8%)	ELV/c/FTC/TDF	988	1159	1042	-	-	172	<50	<50	-	-
2	E138K (1.4%)	DTG/ABC/3TC	51	228	246	309*	-	193297	467	274	51*	-
3	E138K (1.8%)	ELV/c/FTC/TAF	343	553	796	-	-	53388	114	<50	-	-
4	E138K (2.7%)	ELV/c/FTC/TDF	174	359	419	526	717	29166	<50	<50	68	<50
5	R263K (99.8%)	DTG+TDF/FTC	762	1107**	-	-	-	421000	<50**	-	-	-
6	Q148H (2.4%)	DTG+TDF/FTC	335	654	708	-	-	216232	<50	<50	-	-

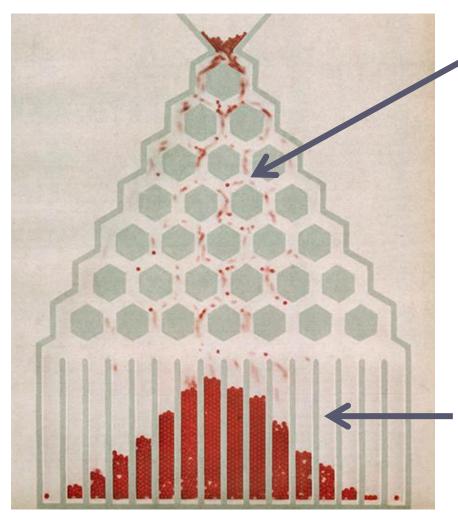
(*treatment change to DRV/r+3TC/ABC (virologic) / ** treatment change to ABC/3TC/DTG)

Casadella M, et al. Europ Workshop HIV & Hep 2017

Which backbone will fit?

DTG monotherapy must be avoided

With Sanger Sequencing:


- 40-70% XTC-resistant
- 35% AZT-resistant
- 60% ETR, RPV-resistant
- TDF-resistant
 - If no TDF exposure:
 - If TDF exposure:

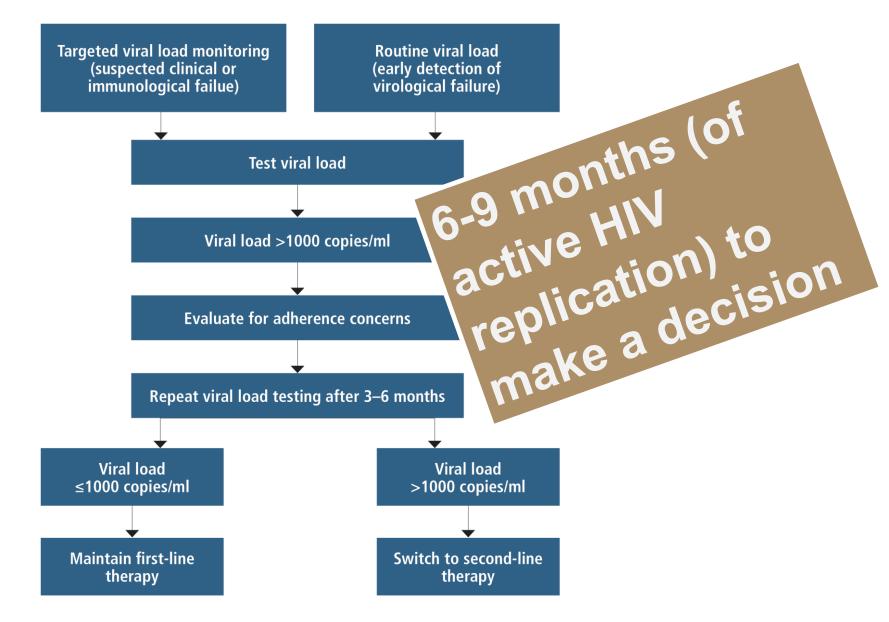
30-50% (up to 70% with NGS)

25%

WHAT & HOW TO MONITOR?

Public health vs. personalized approaches

DRT for clinical Personalized meu.management

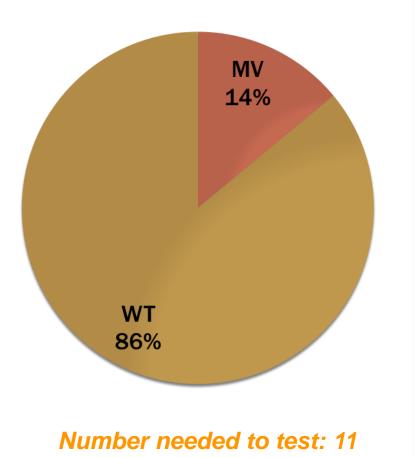

- Cares about the fate of each individual before it has occurred
- Tries to change it through tailored therapeutics
- Goal: maximizing individual outcomes

Public Health Appro

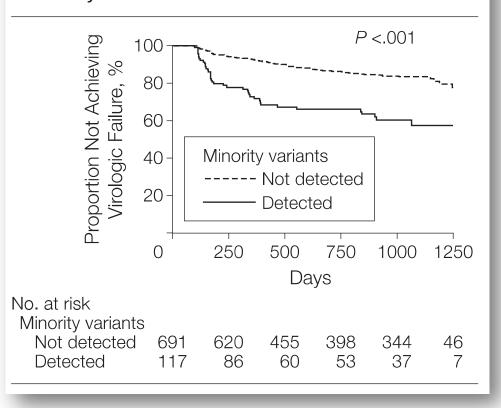
- Epidemiology-base Surveillance •

 - Applies general rules to everyone
 - Goal: maximizing population outcomes by reaching more people

Fig. Viral load testing strategy


When is resistance testing needed for patient management?

	DTG available DTG-based ART	DTG not available EFV-based ART				
Before ART	X No DTG PDR, rare TDF/3TC PDR	If NNRTI PDR >10%				
After 1st-line VF	Can we continue DTG? Is backbone resistance selected? Does it matter?	K Everyone on bPI, backbone resistance does not matter				
After 2nd-line (bPI) VF	Defining a 3rd-line regimen Any role for RAL, really? Can we recycle DTG along bPI?	Defining a 3rd-line regimen Role for RAL/DTG				
HIV-1 infection in PrEP users	X ? Significant risk of TDF/3TC resistance, but, does that matter?	High risk of TDF/3TC resistance, which is assumed to affect the efficacy of EFV-based ART				


When is resistance testing needed for patient management?

	DTG available DTG-based ART	DTG not available EFV-based ART							
Before ART	No DTG PDR, rare TDF/077	eded							
After 1st-line VF	No DTG PDR, rare TDE/OTT Integrase DRT is ne	rywhere							
Integrase Division of the NRTI backbone									
To mai	mage patients, whom mportance of the NRT	Role for RAL/DTG							
In PrEP users	X ? Significant risk of TDF/3TC resistance, but, does that matter?	High risk of TDF/3TC resistance, which is assumed to affect the efficacy of EFV-based ART							

NNRTI DRM in ART-naive

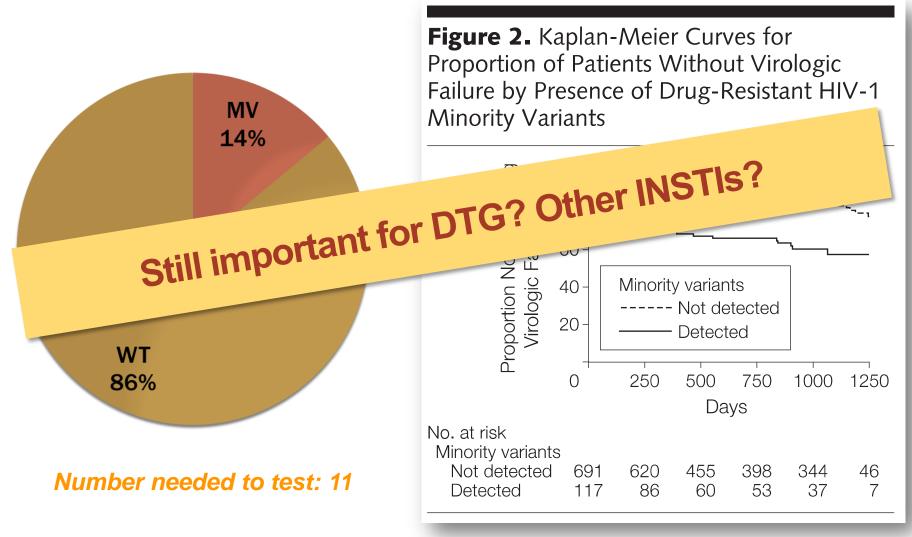
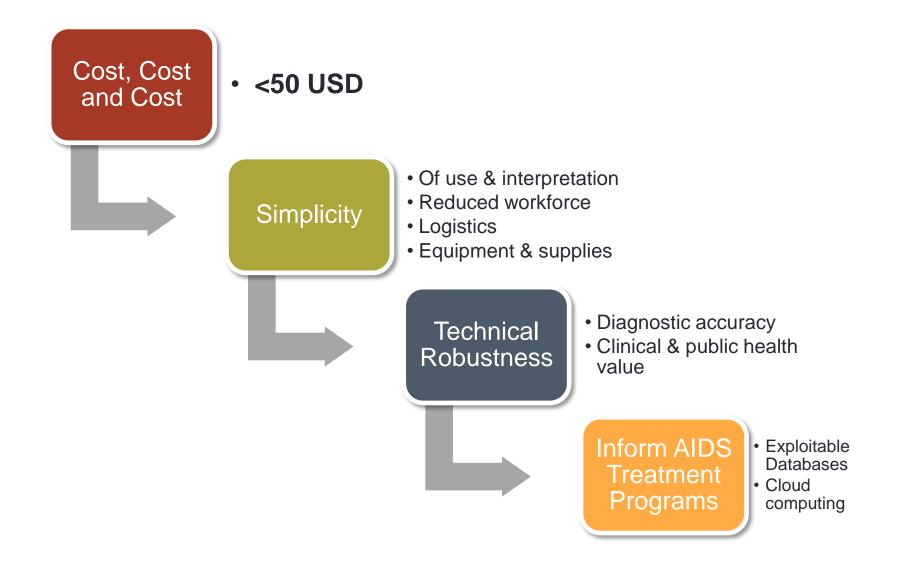


Figure 2. Kaplan-Meier Curves for Proportion of Patients Without Virologic Failure by Presence of Drug-Resistant HIV-1 Minority Variants

Li J et al. JAMA 2011

NNRTI DRM in ART-naive

Li J et al. JAMA 2011


Which technique?

NGS

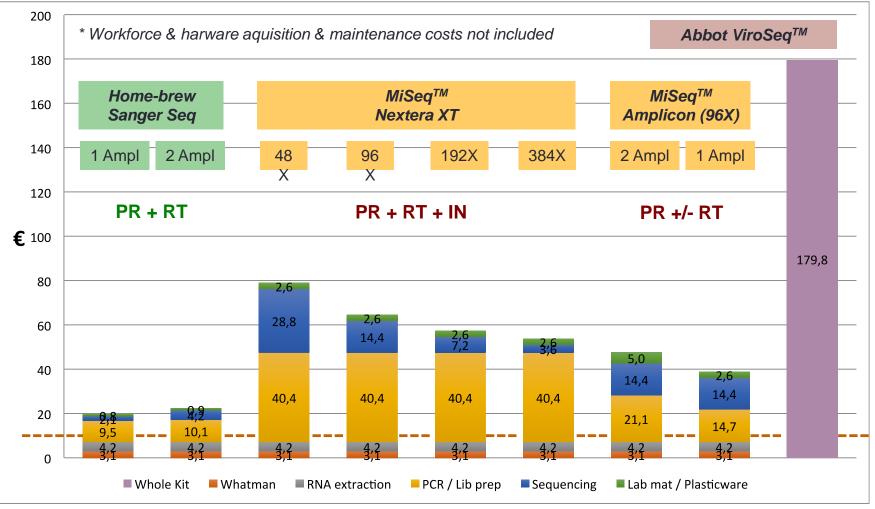
Sanger

Priorities for new resistance technologies

NGS in the WHO-acredited labs 2016

we plan to add NGS genotyping in 2016; 8 we have a validated assay in place (inhouse); 6

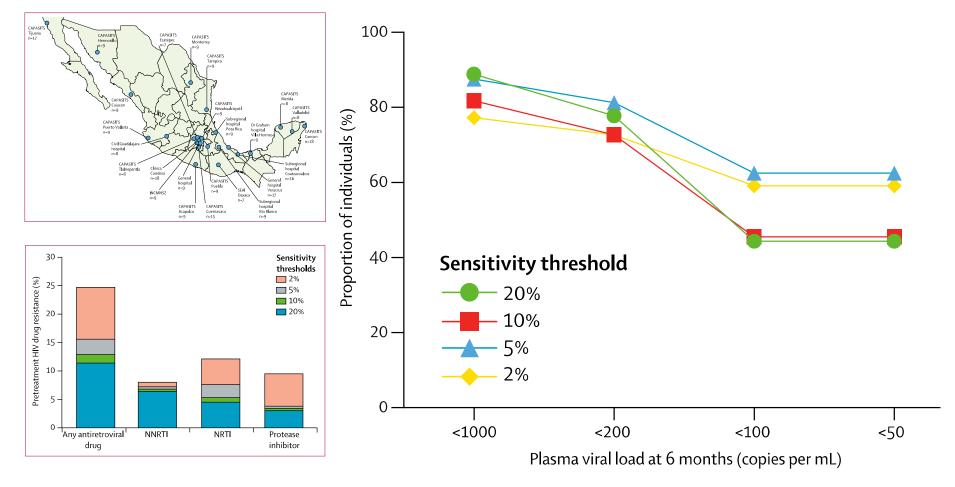
> we have a validated assay in place (kitbased); 1


we have no plans to perform NGS genotyping in 2016; 9

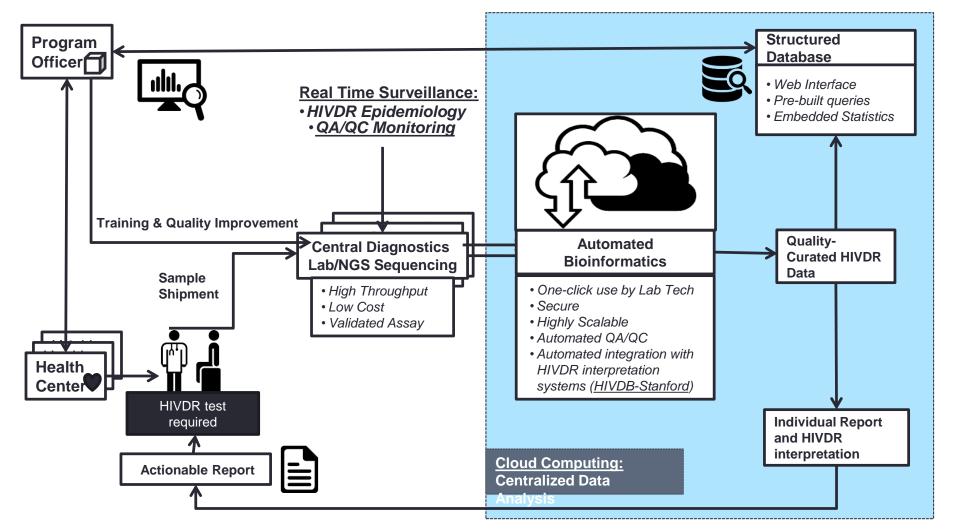
Neil Parkin, personal communication

Operational challenges: Sequencing costs

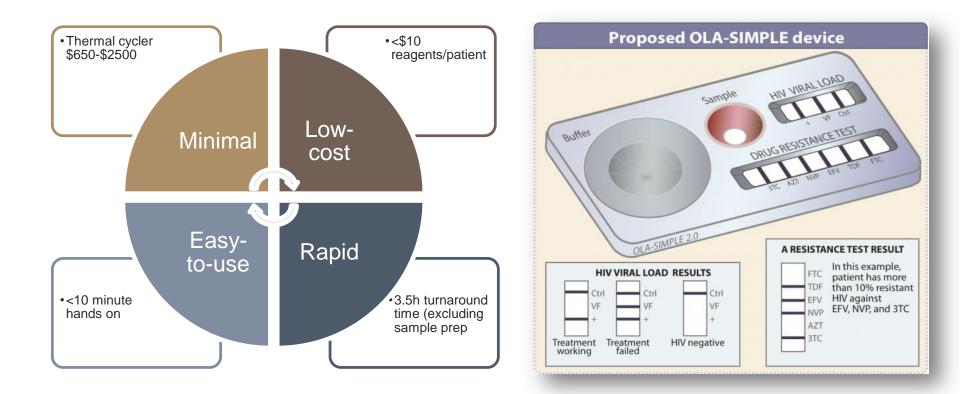
Genotyping costs (€) per reaction @ irsiCaixa


PR + RT

⁻⁻⁻ GeneXpert MTB/RIF: 9.98 US\$ / test


What is the NGS cutoff?

Avila-Rios et al. Lancet HIV 2016


Integrated NGS cloud computing for real-time surveillance

Noguera-Julian M. J Infect Dis 2017

Oligonucleotide Ligation Assay (OLA)

Panpradist N, et al. PLoS One 2016

Highly simplified NGS sequencers

Challenges to implementation

8 Fichas c	ínicas 📝	Ficha social	Pai	nel de ntrolo	Diariá	is 🖌	Exames do sangue	Er Er	ncontros	₿ Ge	stação	123 SI	DA fase	Sino 🕁	pse	1
do sangu	e			Indiolo	-		Sandae						GFR		mi	/min
	o sangue Leuco		Hemo	Plag	LYM	CD4	CD8 CD	4%	CD8%	CD4/CD	C.Viral	HIV DNA	GPT	GOT	Creat	
07/07/201	4		115	170	00.4	265	18				7887					× 111
30/05/201 07/01/201 01/07/201	4 4	3,62 3,6 3,87	11,5 11,6 12,7	479 247 299	29,4 33,9 37,8	241 344	18 19				5232		19,04	30,31	0,65	
11/01/201	개인해 상품화망하여 방법법법	4,19 3,92	12,2 11,9	238 217	38,8 39,7	251 443	17,9 24,0	6			600		14,44	28,47	0,38	
17/07/201	2 3,5	3,56 3	11,7 9,6	169 197	33,8 26,7	311 467	25,9 22,2				4500		19	32	0,94	
17/06/201 20/12/201 21/06/201	1 5,07 0 3,86	3,78 3,62 3,79	12 11,6 12,5	197 158 231	26 46,1 33,6	294 438 381	22 24,1 14,1	34			10000 <50		20,7 44,4	39 68	0,98 1,02	
21/06/20 26/10/200 27/04/200 27/10/200	9 10,97 9 6,25	3,72 4,14 3,9	11,9 13,4 13,1	166 205 205	20,1 49,9 46,6	464 415 601	19, 17, 16	26			9000 1700 8400		12,2 29,6	44 45	1,18 2,38	
29/10/20	8 6,7	3,76	12,7	170	36,6	353 307	14, 16, 20	2			4800		20,0	50		
00180100	17 54	2 07	12.1	145	2007	DEN.		-					Teste d	le HI'		
Prescrição Prescrição		ncontro	Co	lheita de sa	ingi Estado		10	-			Determin		ارد معمول			
12/09/20	14 13	/07/2015 /11/2014			A espe À espe	ra da colhei ra da colhei	ta				Unigol Oraquic				→	
										н	V DNA tes	and the second second			→	

Techniques must be embedded with guidance

Operational research

 To continuously refine techniques and algorithms

Techniques available

- Accurate
- Affordable
- Simple to use and interpret

Clear guidance on how to act upon results

- Clear and simple algorithms must exist
- Training to adopt them

HIV DRUG RESISTANCE: 2018 REVIEW AND RECOMMENDATIONS OF THE INTERNATIONAL ANTIVIRAL SOCIETY-USA PANEL

Huldrych F. Günthard, MD; Vincent Calvez, MD; Roger Paredes, MD; Deenan Pillay, MD; Robert W. Shafer, MD; Annemarie M. Wensing, MD; Donna M. Jacobsen, BS; Douglas D. Richman, MD

CID 2018 under review

Transmission of Minority Variants Harboring DRMs

- Both NGS & Sanger equally useful
- Drug resistance testing to detect minority variants is not currently recommended outside of research settings but may be considered for NNRTIs (evidence rating Alla).

- NGS must report
 - Always: Sanger-like cut-off (15%)
 - Optional 5% (NNRTIs)
 - Store info down to 1%

Integrase testing

- Routine InSTI resistance testing in drug naive individuals is currently not recommended (BIII)
- Baseline InSTI resistance testing is recommended in select patients with evidence of TDR, such as those with nRTI- or multi-class resistance (evidence rating AIII).
- Monitoring of TDR/PDR to InSTI in selected sites in resource rich- and in LMIC-settings is recommended (evidence rating AIII).

Conclusions – clinical & public health implications of widespread DTG

ART-naive

- High efficacy expected → Cost-effective (& possibly life-saving) strategy
- Efficacy with a compromised backbone?

ART-experienced

- INSTI naive
 - · It's all about the backbone
 - Never DTG monotherapy
 - DTG + 3TC not suited for salvage ART (maintenance?)
 - DTG + bPI vs. DTG + TXF + XTC
- DTG-experienced
 - Prior resistance testing is mandatory
 - Uncertain additional role for bictegravir → Main problem RIF interaction
- RAL-experienced, but DTG-naive
 - Ideally with prior genotype

Conclusions - technical

	Today	In the coming 5 years
Technique	In-house Sanger	 NGS + Integrated Cloud computing, but requires: Further cost reductions (library preparation) Wet-lab procedures automatized POC, but requires further implementation research
Interpretation	Operator-driven	Automatized + supervision
Model	Decentralised	Decentralised / Distributed only if POC available
QA/QC	Hierarchical	Supervised, Real-time, Cloud-based
ART	Public health	Public Health / Personalised
Computing	+	+++

DCII checkpoint

OBIERNO DE ESPAÑA iE

Instituto de Salud Vall d'Hebron

RETIC-R²S

IrsiCaixa

Jnión Europea

"Una manera de hacer Europa"

Bonaventura Clotet Vall d'Hebron: Manel Crespo, Jordi Navarro, Ariadna Torrela UVIC-UCC: Malu Calle

This study is supported by the University and Resear ch Secretary - Department of Economy and Knowledge of the Government of Catalonia and the European Social Fund (Ref. 2015 FI_B 00184) and the Fondo de Investigaciones Sanitarias (PI13/02514) & Fondos FEDER & the RED de SIDA RD16/0025/0041